Electronic Engineering

Shee3: Zener Diodes

1- What are the ratings of VIN in figure (1) if

$$
I_{Z K}=0.25 m A, P_{D(\max)}=1 W, V_{Z}=10 \mathrm{~V} ?
$$

$$
\begin{gathered}
I_{\mathrm{ZM}}=\frac{P_{\mathrm{D}(\max)}}{V_{\mathrm{Z}}}=\frac{1 \mathrm{~W}}{10 \mathrm{~V}}=100 \mathrm{~mA} \\
V_{R}=I_{\mathrm{ZK}} R=(0.25 \mathrm{~mA})(220 \Omega)=55 \mathrm{mV} \\
V_{\mathrm{IN}(\min)}=V_{R}+V_{\mathrm{Z}}=55 \mathrm{mV}+10 \mathrm{~V}=10.055 \mathrm{~V} \\
V_{R}=I_{\mathrm{ZM}} R=(100 \mathrm{~mA})(220 \Omega)=22 \mathrm{~V} \\
V_{\mathrm{IN}(\text { max })}=22 \mathrm{~V}+10 \mathrm{~V}=32 \mathrm{~V}
\end{gathered}
$$

2- For fixed regulation in figure (2) , calculate VL, IL , IZK, IZM

Sol assume zener open $\therefore V_{L}=\frac{16 \times 1.2}{1+1.2}=8.73$ $\therefore 8.73<10 \mathrm{~V}, \stackrel{0}{(\mathrm{VZ})} \mathrm{O}$ zeveroff (open)
\rightarrow and $V_{L}=8.73$
$\rightarrow V_{R}=V_{\text {in }} V_{L}=16-8.73=7.17 \mathrm{~V}$

$$
\rightarrow V_{R}=I_{L}=\frac{V_{L}}{R_{L}}=\frac{8.73}{1.2 K}=7.27 \mathrm{NA}
$$

$$
I_{R}=\frac{16-8.73}{1 \mathrm{~K}}=7.27 \mathrm{~mA}
$$

so $P_{z}=V_{z} \pm z=0$

3- Repeat problem (2) if RL replaced with 3 K
b) of $R_{L}=3 K$ repeat problem

$$
\therefore \quad V_{L}=\frac{16 \times 3 k}{1 k+3 k}=12 v
$$

$$
V_{L}>V_{z} s \text { zero } \stackrel{n}{=}
$$

$$
\therefore V_{Z}=V_{L}=10 \mathrm{~V}
$$

$$
\left.\begin{array}{rl}
I l & =\frac{10}{3 k}=3.33 \mathrm{~mA} \\
\Sigma R & =16-10=6 \mathrm{~mA}
\end{array}\right) \longrightarrow I z=I R-I l=(6-3.39) \mathrm{mA}, \begin{array}{rl}
\\
I R & .67 \mathrm{~mA}
\end{array}
$$

$$
\sum R=\frac{16-10}{1 k}=6 \mathrm{~mA}
$$

$$
\begin{aligned}
& \sum R=\frac{16-10}{1 k}=6 \mathrm{mr} \\
& P_{z}=V_{z} I_{z}=(2.67 \mathrm{~mA})(10)=26.7 \mathrm{~mW}
\end{aligned}
$$

